periodicity isomorphism - définition. Qu'est-ce que periodicity isomorphism
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est periodicity isomorphism - définition

THEOREM ON HOMOTOPY GROUPS
Bott periodicity; Bott element; Bott's periodicity theorem

Periodicity         
WIKIMEDIA DISAMBIGUATION PAGE
Periodic; Periodicity (disambiguation); Periodic (disambiguation); Periodicities
·noun The quality or state of being periodical, or regularly recurrent; as, the periodicity in the vital phenomena of plants.
Isomorphism (crystallography)         
  • thumb
TYPE OF CRYSTALS
Law of isomorphism; Law of Isomorphism; Isomorphic series; Isotype (crystallography); Mitscherlich's law of isomorphism
In chemistry isomorphism has meanings both at the level of crystallography and at a molecular level. In crystallography, compounds are isomorphous if their symmetry is the same and their unit cell parameters are similar
periodic         
WIKIMEDIA DISAMBIGUATION PAGE
Periodic; Periodicity (disambiguation); Periodic (disambiguation); Periodicities
Periodic events or situations happen occasionally, at fairly regular intervals.
...periodic bouts of illness.
= periodical
ADJ: usu ADJ n

Wikipédia

Bott periodicity theorem

In mathematics, the Bott periodicity theorem describes a periodicity in the homotopy groups of classical groups, discovered by Raoul Bott (1957, 1959), which proved to be of foundational significance for much further research, in particular in K-theory of stable complex vector bundles, as well as the stable homotopy groups of spheres. Bott periodicity can be formulated in numerous ways, with the periodicity in question always appearing as a period-2 phenomenon, with respect to dimension, for the theory associated to the unitary group. See for example topological K-theory.

There are corresponding period-8 phenomena for the matching theories, (real) KO-theory and (quaternionic) KSp-theory, associated to the real orthogonal group and the quaternionic symplectic group, respectively. The J-homomorphism is a homomorphism from the homotopy groups of orthogonal groups to stable homotopy groups of spheres, which causes the period 8 Bott periodicity to be visible in the stable homotopy groups of spheres.